“变分计算例子”的版本间的差异
来自Particle Pysics, UJN
(未显示同一用户的2个中间版本) | |||
第1行: | 第1行: | ||
解答见原网页 [http://www.exampleproblems.com/wiki/index.php/Calculus_of_Variations 变分计算] | 解答见原网页 [http://www.exampleproblems.com/wiki/index.php/Calculus_of_Variations 变分计算] | ||
− | # Find the path that minimizes the arclength of the curve between <math>(x_0,y_0) = (0,0)\,</math> and <math>(x_1,y_1) = (1,1)\,</math>. | + | # Find the path that minimizes the arclength of the curve between <math>(x_0,y_0) = (0,0)\,</math> and <math>(x_1,y_1) = (1,1)\,</math>. |
− | + | # Find the extrema of <math>x^2+y^2+z^2\,</math> subject to the constraint <math>x^2+2y^2-z^2-1=0\,</math>. | |
− | # Find the extrema of <math>x^2+y^2+z^2\,</math> subject to the constraint <math>x^2+2y^2-z^2-1=0\,</math>. | + | # Find the maximum of <math>xy^2z^2\,</math> subject to the constraint <math>x+y+z=12\,</math>. |
− | + | # Write the Euler-Lagrange equation for <math>L(x,y,z,y',z',y'',z'',y''',z''',...,y^{(k)},z^{(k)})\,</math>. | |
− | # Find the maximum of <math>xy^2z^2\,</math> subject to the constraint <math>x+y+z=12\,</math>. | + | # Constraint problem: Minimize <math>T(y)=\int_0^1\left(y'^2+x^2\right)\,dx\,</math> s.t. <math>K(y)=\int_0^1y^2\,dx=2\,</math>. |
− | + | # Derive the Euler-Lagrange equation from the attempt to minimize the functional | |
− | # Write the Euler-Lagrange equation | + | #: <math>T(y)=\int_a^b L(y,y',x)\,dx\,</math> |
− | + | # Minimize the functional from classical mechanics: <math>\int_{t_1}^{t_2}(\mathrm{Kinetic\,Energy} - \mathrm{Potential\,Energy})\,</math> | |
− | # Constraint problem: Minimize <math>T(y)=\int_0^1\left(y'^2+x^2\right)\,dx\,</math> s.t. <math>K(y)=\int_0^1y^2\,dx=2\,</math>. | + | # Find the extrema of <math>\int_a^b \frac{y'^2}{x^3}\,dx\,</math>.<br> |
− | + | # Find the extrema of <math>\int_a^b (y^2 +y'^2 + 2y e^x) \,dx\,</math>.<br> | |
− | # Derive the Euler-Lagrange equation from the attempt to minimize the functional | + | # Show that the first variation <math>\delta J(y_0,h)\,</math> satisfies the homogeneity condition <math>\delta J(y_0, \alpha h) = \alpha \delta J(y_0, h), \alpha \isin \mathbb{R}\,</math>. <math>J:V\to R'\,</math>, where <math>V\,</math> is a normed linear space, is linear if <math>J(y_1+y_2) = J(y_1) + J(y_2), y_1,y_2\isin V\,</math> and <math>J(\alpha y_1) = \alpha J(y_1), \alpha \isin R', y_1\isin V\,</math>. Which of the following are functionals on <math>C^{-1}[a,b]\,</math> are linear? |
− | + | #:(a) <math>J(y)=\int_a^b y y' dx\,</math> | |
− | # | + | #:(b) <math>J(\alpha y) = \int_a^b (4y'^2 + 2(\alpha y))dx\,</math> |
− | + | #:(c) <math>J(y) = e^{y(a)}\,</math> | |
− | # Minimize the functional from classical mechanics: <math>\int_{t_1}^{t_2}(\mathrm{Kinetic\,Energy} - \mathrm{Potential\,Energy})\,</math> | + | #:(d) The set of all continuous functions on <math>[0,1]\,</math> satisfying <math>f(0)=0\,</math> |
− | + | #:(e) The set of all continuous functions on <math>[0,1]\,</math> satisfying <math>f(1)=1\,</math> | |
− | # Find the extrema of <math>\int_a^b \frac{y'^2}{x^3}\,dx\,</math>.<br> | + | |
− | + | ||
− | # Find the extrema of <math>\int_a^b (y^2 +y'^2 + 2y e^x) \,dx\,</math>.<br> | + | |
− | + | ||
− | # Show that the first variation <math>\delta J(y_0,h)\,</math> satisfies the homogeneity condition <math>\delta J(y_0, \alpha h) = \alpha \delta J(y_0, h), \alpha \isin \mathbb{R}\,</math>. | + | |
− | + | ||
− | + | ||
− | + | ||
− | (a) <math>J(y)=\int_a^b y y' dx\,</math> | + | |
− | + | ||
− | (b) <math>J(\alpha y) = \int_a^b (4y'^2 + 2(\alpha y))dx\,</math> | + | |
− | + | ||
− | (c) <math>J(y) = e^{y(a)}\,</math> | + | |
− | + | ||
− | (d) The set of all continuous functions on <math>[0,1]\,</math> satisfying <math>f(0)=0\,</math> | + | |
− | + | ||
− | (e) The set of all continuous functions on <math>[0,1]\,</math> satisfying <math>f(1)=1\,</math> | + | |
− | + | ||
− | + | ||
# Find the extremal for <math>J(y)=\int_1^2 \frac{\sqrt{1+y'^2}}{x} dx, y(1)=0, y(2)=1\,</math> | # Find the extremal for <math>J(y)=\int_1^2 \frac{\sqrt{1+y'^2}}{x} dx, y(1)=0, y(2)=1\,</math> | ||
− | |||
# Compute the first variation of <math>J(y)=\int_a^b yy' dx\,</math> | # Compute the first variation of <math>J(y)=\int_a^b yy' dx\,</math> | ||
− | |||
# Compute the first variation of <math>J(y)=\int_a^b (y'^2+2y)dx\,</math> | # Compute the first variation of <math>J(y)=\int_a^b (y'^2+2y)dx\,</math> | ||
− | |||
# Compute the first variation of <math>J(y)=e^{y(a)}\,</math> | # Compute the first variation of <math>J(y)=e^{y(a)}\,</math> | ||
− | |||
# Minimize <math>J(y) = \int_0^\infty (y^2 + y'^2 + (y''+y')^2)dx, y(0)=1, y'(0)=2, y(\infty)=0, y'(\infty)=0\,</math> | # Minimize <math>J(y) = \int_0^\infty (y^2 + y'^2 + (y''+y')^2)dx, y(0)=1, y'(0)=2, y(\infty)=0, y'(\infty)=0\,</math> | ||
− | |||
# Find the extremals of <math>J(y) = \int_0^1(yy'+y''^2)dx, y(0)=0, y'(0)=1, y(1)=2, y'(1)=4\,</math> | # Find the extremals of <math>J(y) = \int_0^1(yy'+y''^2)dx, y(0)=0, y'(0)=1, y(1)=2, y'(1)=4\,</math> | ||
− | + | # Find the Euler-Lagrange equation for <math>J(y,z)=\int_a^b\left[ y''z' + xyz'' + z'''y^2\right] dx\,</math> | |
− | # Find the Euler-Lagrange | + | |
− | + | ||
# Minimize <math>J(y)=\int_0^1(1+y''^2)dx, y(0)=0,y'(0)=1,y(1)=1,y'(1)=1\,</math> | # Minimize <math>J(y)=\int_0^1(1+y''^2)dx, y(0)=0,y'(0)=1,y(1)=1,y'(1)=1\,</math> | ||
− | |||
# Minimize <math>J(y)=\int 2\pi y \sqrt{1+y'^2} dx\,</math> | # Minimize <math>J(y)=\int 2\pi y \sqrt{1+y'^2} dx\,</math> | ||
− | |||
# Obtain a necessary condition for a function <math>y\isin C[a,b]\,</math> to be a local minimum of the functional | # Obtain a necessary condition for a function <math>y\isin C[a,b]\,</math> to be a local minimum of the functional | ||
− | + | #;<math>J(y) = \iint\limits_R K(s,t) y(s) y(t) ds dt + \int_a^b y(t)^2dt-2\int_a^b y(t) f(t)dt\,</math> | |
− | <math>J(y) = \iint\limits_R K(s,t) y(s) y(t) ds dt + \int_a^b y(t)^2dt-2\int_a^b y(t) f(t)dt\,</math> | + | |
− | + | ||
# Find the Euler equation for the functional | # Find the Euler equation for the functional | ||
− | + | #;<math>J(u)=\iint\limits_G\left[u_x^2+u_y^2+2f(x,y)u(x,y)\right]dxdy\,</math> | |
− | <math>J(u)=\iint\limits_G\left[u_x^2+u_y^2+2f(x,y)u(x,y)\right]dxdy\,</math> | + | #: where <math>G\,</math> is a closed region in the <math>xy\,</math> plane and <math>u\,</math> has continuous second partial derivatives.<br> |
− | + | ||
− | where <math>G\,</math> is a closed region in the <math>xy\,</math> plane and <math>u\,</math> has continuous second partial derivatives. | + | |
− | + | ||
− | <br> | + | |
# Find the extremal of the functional <math>J(y)=\int_0^\pi\left[y'(x)\right]^2dx\,</math> subject to the constraint <math>\int_0^\pi \left[ y(x)\right]^2dx=1, y(0)=y(\pi)=0\,</math>. | # Find the extremal of the functional <math>J(y)=\int_0^\pi\left[y'(x)\right]^2dx\,</math> subject to the constraint <math>\int_0^\pi \left[ y(x)\right]^2dx=1, y(0)=y(\pi)=0\,</math>. | ||
− | |||
# Determine the function <math>\hat{y}\isin C^2[0,1]\,</math> that minimizes the functional <math>J(y)=\int_0^1\left[y'(x)\right]^2dx+[y(1)]^2, y(0)=1, h(0)=0\,</math>. | # Determine the function <math>\hat{y}\isin C^2[0,1]\,</math> that minimizes the functional <math>J(y)=\int_0^1\left[y'(x)\right]^2dx+[y(1)]^2, y(0)=1, h(0)=0\,</math>. | ||
− | |||
# Let <math>J:A\to\mathbb{R}\,</math> be a functional on a subset <math>A\,</math> of a normed linear space <math>V\,</math>. | # Let <math>J:A\to\mathbb{R}\,</math> be a functional on a subset <math>A\,</math> of a normed linear space <math>V\,</math>. | ||
− | + | #:(a) Define precisely the first variation <math>\delta J(y_0,h)\,</math> of <math>J\,</math> at <math>y_0\,</math> and admissible <math>h(x)\,</math>. | |
− | (a) Define precisely the first variation <math>\delta J(y_0,h)\,</math> of <math>J\,</math> at <math>y_0\,</math> and admissible <math>h(x)\,</math>. | + | #:(b) Show that if <math>\delta J(y_0,h)\,</math> exists for a certain admissible <math>h\isin V\,</math>, then <math>\delta J(y_0,\alpha h)\,</math> also exists for every real number <math>\alpha\</math>, and <math>\delta J(y_0,\alpha h)=\alpha \delta J(y_0,h)\,</math>. |
− | + | ||
− | (b) Show that if <math>\delta J(y_0,h)\,</math> exists for a certain admissible <math>h\isin V\,</math>, then <math>\delta J(y_0,\alpha h)\,</math> also exists for every real number <math>\alpha\ | + | |
− | + | ||
# Compute the first variation <math>\delta J(y,h)\,</math> for <math>y\isin C[0,1]\,</math>: <math>J(y)=e^{y(0)}\,</math> | # Compute the first variation <math>\delta J(y,h)\,</math> for <math>y\isin C[0,1]\,</math>: <math>J(y)=e^{y(0)}\,</math> | ||
− | |||
# Compute the first variation <math>\delta J(y,h)\,</math> for <math>y\isin C[0,1]\,</math>: <math>J(y)=\int_0^1\int_0^1\sin(xt)y(x)y(t)dxdt\,</math> | # Compute the first variation <math>\delta J(y,h)\,</math> for <math>y\isin C[0,1]\,</math>: <math>J(y)=\int_0^1\int_0^1\sin(xt)y(x)y(t)dxdt\,</math> | ||
− | |||
# Compute the first variation <math>J(y) = \int_0^1 (3y^2 + x) dx + y^2(0), y_0(x) = x, h(x)=x+1\,</math> | # Compute the first variation <math>J(y) = \int_0^1 (3y^2 + x) dx + y^2(0), y_0(x) = x, h(x)=x+1\,</math> |
2016年10月18日 (二) 09:02的最后版本
解答见原网页 变分计算
- Find the path that minimizes the arclength of the curve between $ (x_0,y_0) = (0,0)\, $ and $ (x_1,y_1) = (1,1)\, $.
- Find the extrema of $ x^2+y^2+z^2\, $ subject to the constraint $ x^2+2y^2-z^2-1=0\, $.
- Find the maximum of $ xy^2z^2\, $ subject to the constraint $ x+y+z=12\, $.
- Write the Euler-Lagrange equation for $ L(x,y,z,y',z',y'',z'',y''',z''',...,y^{(k)},z^{(k)})\, $.
- Constraint problem: Minimize $ T(y)=\int_0^1\left(y'^2+x^2\right)\,dx\, $ s.t. $ K(y)=\int_0^1y^2\,dx=2\, $.
- Derive the Euler-Lagrange equation from the attempt to minimize the functional
- $ T(y)=\int_a^b L(y,y',x)\,dx\, $
- Minimize the functional from classical mechanics: $ \int_{t_1}^{t_2}(\mathrm{Kinetic\,Energy} - \mathrm{Potential\,Energy})\, $
- Find the extrema of $ \int_a^b \frac{y'^2}{x^3}\,dx\, $.
- Find the extrema of $ \int_a^b (y^2 +y'^2 + 2y e^x) \,dx\, $.
- Show that the first variation $ \delta J(y_0,h)\, $ satisfies the homogeneity condition $ \delta J(y_0, \alpha h) = \alpha \delta J(y_0, h), \alpha \isin \mathbb{R}\, $. $ J:V\to R'\, $, where $ V\, $ is a normed linear space, is linear if $ J(y_1+y_2) = J(y_1) + J(y_2), y_1,y_2\isin V\, $ and $ J(\alpha y_1) = \alpha J(y_1), \alpha \isin R', y_1\isin V\, $. Which of the following are functionals on $ C^{-1}[a,b]\, $ are linear?
- (a) $ J(y)=\int_a^b y y' dx\, $
- (b) $ J(\alpha y) = \int_a^b (4y'^2 + 2(\alpha y))dx\, $
- (c) $ J(y) = e^{y(a)}\, $
- (d) The set of all continuous functions on $ [0,1]\, $ satisfying $ f(0)=0\, $
- (e) The set of all continuous functions on $ [0,1]\, $ satisfying $ f(1)=1\, $
- Find the extremal for $ J(y)=\int_1^2 \frac{\sqrt{1+y'^2}}{x} dx, y(1)=0, y(2)=1\, $
- Compute the first variation of $ J(y)=\int_a^b yy' dx\, $
- Compute the first variation of $ J(y)=\int_a^b (y'^2+2y)dx\, $
- Compute the first variation of $ J(y)=e^{y(a)}\, $
- Minimize $ J(y) = \int_0^\infty (y^2 + y'^2 + (y''+y')^2)dx, y(0)=1, y'(0)=2, y(\infty)=0, y'(\infty)=0\, $
- Find the extremals of $ J(y) = \int_0^1(yy'+y''^2)dx, y(0)=0, y'(0)=1, y(1)=2, y'(1)=4\, $
- Find the Euler-Lagrange equation for $ J(y,z)=\int_a^b\left[ y''z' + xyz'' + z'''y^2\right] dx\, $
- Minimize $ J(y)=\int_0^1(1+y''^2)dx, y(0)=0,y'(0)=1,y(1)=1,y'(1)=1\, $
- Minimize $ J(y)=\int 2\pi y \sqrt{1+y'^2} dx\, $
- Obtain a necessary condition for a function $ y\isin C[a,b]\, $ to be a local minimum of the functional
- $ J(y) = \iint\limits_R K(s,t) y(s) y(t) ds dt + \int_a^b y(t)^2dt-2\int_a^b y(t) f(t)dt\, $
- Find the Euler equation for the functional
- $ J(u)=\iint\limits_G\left[u_x^2+u_y^2+2f(x,y)u(x,y)\right]dxdy\, $
- where $ G\, $ is a closed region in the $ xy\, $ plane and $ u\, $ has continuous second partial derivatives.
- Find the extremal of the functional $ J(y)=\int_0^\pi\left[y'(x)\right]^2dx\, $ subject to the constraint $ \int_0^\pi \left[ y(x)\right]^2dx=1, y(0)=y(\pi)=0\, $.
- Determine the function $ \hat{y}\isin C^2[0,1]\, $ that minimizes the functional $ J(y)=\int_0^1\left[y'(x)\right]^2dx+[y(1)]^2, y(0)=1, h(0)=0\, $.
- Let $ J:A\to\mathbb{R}\, $ be a functional on a subset $ A\, $ of a normed linear space $ V\, $.
- (a) Define precisely the first variation $ \delta J(y_0,h)\, $ of $ J\, $ at $ y_0\, $ and admissible $ h(x)\, $.
- (b) Show that if $ \delta J(y_0,h)\, $ exists for a certain admissible $ h\isin V\, $, then $ \delta J(y_0,\alpha h)\, $ also exists for every real number $ \alpha\ $, and $ \delta J(y_0,\alpha h)=\alpha \delta J(y_0,h)\, $.
- Compute the first variation $ \delta J(y,h)\, $ for $ y\isin C[0,1]\, $: $ J(y)=e^{y(0)}\, $
- Compute the first variation $ \delta J(y,h)\, $ for $ y\isin C[0,1]\, $: $ J(y)=\int_0^1\int_0^1\sin(xt)y(x)y(t)dxdt\, $
- Compute the first variation $ J(y) = \int_0^1 (3y^2 + x) dx + y^2(0), y_0(x) = x, h(x)=x+1\, $