核子结构
概述
根据夸克模型,质子由三个夸夸uud组成,中子由三个夸克udd组成,自旋味道波函数为
$ \begin{align} |p,\uparrow\rangle=\frac{1}{\sqrt{18}}\left[uud(\uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow-2\uparrow\uparrow\downarrow)+(\text{轮换})\right], \end{align} $
夸克质量约为300 MeV,处于$ L=0 $的基态,没有相对运动。
而根据部分子模型,质子由无穷数量的夸克、反夸克和胶子(统称为“部分子”)组成,组分之间的相互作用为量子色动力学(非微扰)。核子是一个具有无穷自由度的、强耦合多粒子系统。
核子结构研究的主要实验手段是高能粒子散射,如电子-核子深度非弹(DIS)、核子-核子碰撞的Drell-Yan过程、核子核子碰撞的大横动量强子/喷注产生等;主要理论工具为量子场论、量子色动力学及唯象模型等。近年来格点QCD在核子结构中的应用取得了突破性进展,在不久的将来将能够直接利用计算机模拟从QCD出发通过第一原理计算得到核子性质。
部分子分布函数
描述质子性质的物理量为部分子分布函数,他们给出了质子内某种部分子的数密度。光锥动量定义为$ p^\pm\equiv \frac{1}{\sqrt{2}}(p^0\pm p^z) $,假定质子沿z方向运动,则质子的四动量为$ \begin{align}p^\mu=\left(p^+,\frac{M^2}{2p^+},\vec 0_\perp\right)\end{align} $。
质子的夸克分布函数定义为
$ \begin{align} f_q(x)=\int\frac{d\xi^-}{4\pi}e^{ixp^+\xi^-}\left\langle p\left|\bar\psi_q(0){\cal L}(0,\xi^-)\gamma^+\psi_q(\xi^-)\right|p\right\rangle, \end{align} $
表示质子内动量分数为x、味道为q的夸克的数密度。上式中$ \displaystyle\langle p|\ldots|p\rangle\equiv \frac{1}{2}\sum_s\langle p,s|\ldots|p,s\rangle $, 出现的$ {\cal L} $为规范链,它的存在确保$ f_q(x) $为规范不变的物理观测量。规范链的定义为
$ \begin{align} {\cal L}(0,\xi^-)={\cal P}\exp\left\{-ig\int_0^{\xi^-} A^{a+}(\eta^-)T^ad\eta^-\right\} \end{align} $
上式中$ {\cal P} $为路径变序算子,它对几个算符乘积的作用效果为:将路径上更靠近终点的算子移动到左边,靠近起始点的算子移动到右边;a为色指标,$ T^a $为基础表示中的$ SU(3) $群生成元。夸克分布函数可以用如下的费曼图表示,其中$ u^\mu=(0,1,\vec 0_\perp),~~~n\cdot A=A^+ $。图中双线为eikonal线,它以及与胶子的相互作用节点均来自规范链。
夸克分布函数 | Eikonal线及与胶子的相互作用节点 |
反夸克分布函数
$ \begin{align} f_\bar q(x)=\int\frac{d\xi^-}{4\pi}e^{ixp^+\xi^-}{\rm Tr}[\gamma^+\left\langle p\left|\psi_q(0){\cal L}^\dagger (0,\xi^-)\bar\psi_q(\xi^-)\right|p\right\rangle. \end{align} $
根据费米子场的反对易性质,有 $ f_{\bar q}(x)=-f_q(-x) $.
胶子分布函数
$ \begin{align} G(x)=\frac{1}{xp^+}\int\frac{d\xi^-}{2\pi}e^{ixp^+\xi^-}\left\langle p\left|F^{+\nu}(0)\tilde{\cal L}(0,\xi^-){F_\nu}^+(\xi^-)\right|p\right\rangle. \end{align} $
胶子分布函数 |
上式中$ \tilde {\cal L} $为伴随表示中的规范链,形式与基础表示中的类似,只需将$ T^a $替换为伴随表示中的$ SU(3) $群生成元 $ (T^a)_{bc}\equiv -if^{abc} $.
部分子分布函数在光锥规范中较明确的物理意义。光锥规范取$ A^+=0 $,规范链$ {\cal L}=1 $,规范场强$ F^{+\nu}=\partial^+A^\nu $。再利用光锥量子化的场算子
$ \begin{align} \psi(x)=\int\frac{dk^+d^2k_\perp}{\sqrt{2p^+}\sqrt{(2\pi)^3}} \left[b_p^s u_p^s e^{-ik\cdot x}+d_p^{s\dagger} \bar v_p^s e^{ik\cdot x}\right]. \end{align} $
上式中$ \left\{b_k^s,b_{k^\prime}^{s^\prime\dagger}\right\}=\left\{d_k^s,d_{k^\prime}^{s^\prime\dagger}\right\}=2k^+(2\pi)^3\delta(k^+-k^{\prime+})\delta^2(\vec k_\perp-\vec k^\prime_\perp)\delta^{ss^\prime} $
极化的部分子分布函数
考虑核子为极化的情况,描述核子极化方向的矢量为极化矢量$ s^\mu $。在静止系中质子的自旋方向为$ \vec{n} $,则极化矢量为$ s_*^\mu=(0,\vec n) $,变换到运动系之后得到极化矢量为$ s^\mu=\left(\frac{\vec p\cdot\vec n}{m},\vec n+\frac{(\vec p\cdot \vec n)\vec p}{m(m+p^0)}\right) $。对沿某个方向的粒子的极化投影算子为 $ \frac{1}{2}(1\pm\gamma_5 \not{s}) $,其中$ \pm $对应于正反粒子。